Received 2 August 2004 Accepted 11 August 2004

Online 21 August 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Baofeng Zhang, Chengzhi Xie, Xiaoqing Wang,* Guangqiu Shen and Dezhong Shen

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail: xqwang@tsinghua.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.063 wR factor = 0.148 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A novel heterometallic Fe^{II}–Na⁺ phase: 1,10-phenanthrolinium aquabis(1,10-phenanthroline)sodium(I) pentacyanonitrosoiron(II) monohydrate

The structure of the title compound, $(C_{12}H_9N_2)$ -[Na($C_{12}H_8N_2$)₂(H₂O)][Fe(CN)₅(NO)]·H₂O, is built up from Fe^{II}-containing anions, Na⁺-containing cations, non-coordinated 1,10-phenanthrolinium (Hphen) cations and water molecules. The sodium cation is coordinated to two *N*,*N*'bidentate phen ligands and one water molecule in approximate square-based pyramidal geometry, with the O atom occupying the axial site. The non-coordinated Hphen and water molecules link the metal complexes through O–H···N and N–H···O hydrogen bonds, forming a three-dimensional network.

Comment

The title compound, (I), combines an Fe^{II}-containing, $[Fe(CN)_5(NO)]^{2-}$, nitroprusside anion [see Soria *et al.* (2002) for a review of related structures] with an unusual $[Na(phen)_2(H_2O)]^+$ cation.

The asymmetric unit of (I) (Fig. 1) contains a discrete $[Na(1,10-phenanthroline)_2(H_2O)]^+$ grouping, a $[Fe(CN)_5-(NO)]^{2-}$ nitroprusside unit, one uncoordinated $(C_{12}H_9N_2)^+$ 1,10-phenanthrolinium cation and one uncoordinated water molecule (Table 1). The coordination environment about Na1 approximates to a square-based pyramid, with the four N atoms (N7, N8, N9 and N10) from two phen ligands occupying the equatorial positions, and one water O atom (O2) occupying the axial position. The Na–O bond is slightly shorter than the Na–N bonds (Table 1). The [Fe(CN)_5(NO)]^{2-} nitroprusside ion has its usual distorted octahedral pagoda-

 ${\rm (\!C\!\!\!\!C\!\!}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEPII (Johnson, 1976) drawing of (I), with 35% probability ellipsoids, showing the atom-numbering scheme. H atoms are represented by spheres of arbitrary radius. For clarity, H and C atoms are not labelled.

Figure 2

A view of the molecular packing in (I), viewed down the a axis.

like conformation, with an average Fe-C bond distance of 1.936 (2) Å and an Fe-N bond distance of 1.652 (4) Å, in agreement with literature values (Soria *et al.*, 2002). The structure is completed by an uncoordinated Hphen cation, thus ensuring charge balance, and one uncoordinated water molecule. As shown in Fig. 2, the O-H···N and N-H···O hydrogen bonds (Table 2) between the metal complexes, Hphen cations water molecules result in the formation of a three-dimensional network.

Experimental

Sodium nitroprusside (0.5 mmol) and phen (1.0 mmol) were dissolved in deionized water (20 ml). The resulting mixture was stirred for 4 h at room temperature and filtered and evaporated.

After 7 d, red crystals of the complex suitable for X-ray single-crystal analysis were obtained. They were collected by suction filtration and air-dried (yield: 14%). All chemicals used in this experiment were purchased commercially without further purification. Found (%): C 60.13, H 3.59, N 20.51; calculated for $C_{41}H_{29}FeN_{12}NaO_3$ (%): C 60.25, H 3.55, N 20.57.

 $D_x = 1.425 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation

reflections

 $\theta = 2.2-20.9^{\circ}$ $\mu = 0.47 \text{ mm}^{-1}$

T = 293 (2) K

Prism, red

Cell parameters from 1009

 $0.18 \times 0.16 \times 0.12 \text{ mm}$

Crystal data

 $(C_{12}H_9N_2)[Na(C_{12}H_8N_2)_2(H_2O)]-[Fe(CN)_5(NO)]\cdot H_2O$ $M_r = 816.60$ Monoclinic, $P2_1/c$ a = 10.429 (3) Å b = 22.125 (6) Å c = 19.435 (6) Å $\beta = 121.922$ (5)° V = 3806.1 (18) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	7801 independent reflections
diffractometer	3256 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.100$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Sheldrick, 1997)	$h = -13 \rightarrow 13$
$T_{\min} = 0.794, \ T_{\max} = 0.946$	$k = -27 \rightarrow 26$
21737 measured reflections	$l = -20 \rightarrow 24$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.063$	$w = 1/[\sigma^2(F_o^2) + (0.0552P)^2]$
$wR(F^2) = 0.149$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.93	$(\Delta/\sigma)_{\rm max} < 0.001$
7801 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
523 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Fe1-N6	1.652 (4)	Na1-O2	2.378 (3)
Fe1-C1	1.926 (6)	Na1-N7	2.413 (4)
Fe1-C5	1.927 (5)	Na1-N10	2.415 (4)
Fe1-C3	1.940 (5)	Na1-N8	2.439 (4)
Fe1-C4	1.940 (4)	Na1-N9	2.520 (4)
Fe1-C2	1.948 (4)		
O2-Na1-N7	98.81 (11)	N10-Na1-N8	115.77 (14)
O2-Na1-N10	94.87 (12)	O2-Na1-N9	102.25 (12)
N7-Na1-N10	163.19 (14)	N7-Na1-N9	99.73 (13)
O2-Na1-N8	109.19 (11)	N10-Na1-N9	67.65 (13)
N7-Na1-N8	68.65 (12)	N8-Na1-N9	147.68 (13)

Table 2

Hydrogen-bonding geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
0.85	2.10	2.897 (4)	157
0.85	2.04	2.883 (4)	171
0.86	1.96	2.774 (4)	157
0.84	1.88	2.725 (8)	179
0.86	2.27	2.806 (7)	120
	<i>D</i> -H 0.85 0.85 0.86 0.84 0.86	$\begin{array}{c cccc} D-H & H \cdots A \\ \hline 0.85 & 2.10 \\ 0.85 & 2.04 \\ 0.86 & 1.96 \\ 0.84 & 1.88 \\ 0.86 & 2.27 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) $x - 1, \frac{1}{2} - y, z - \frac{1}{2}$; (iii) 1 + x, y, z.

H atoms attached to O and N atoms were positioned geometrically and the coordinates for water H atoms were calculated using the program *HYDROGEN* (Nardelli, 1999). These H atoms were constrained to ride on their parent atoms in the final refinement. H atoms attached to C atoms were placed in calculated positions (C–H = 0.93 Å) and allowed to ride on the parent atoms, with $U_{\rm iso}$ values constrained to be $1.2U_{\rm eq}$ of the parent atom. Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China (No. 50132010) and the 985 Program of Tsinghua University for financial support.

References

- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
- Soria, D. B., Villalba, M. E. C., Piro, O. E. & Aymonino, P. J. (2002). Polyhedron, 21, 1767–1774.